ABDK
CONSULTING

SMART CONTRACT
AUDIT

Para Finance

Solidity

abdk.consulting

SMART CONTRACT AUDIT CONCLUSION

by Mikhail Vladimirov and Dmitry Khovratovich
29th July 2022

We've been asked to review 11 files in a Github repository. We found 2 critical, 9 major,
and a few less important issues. All identified critical issues have been fixed.

B Critical
M Major

Moderate
= \inor

79

https://github.com/yieldprotocol/yieldspace-tv/tree/a8f47b0bb660df7a688beb2782a4d501d5d6c101

Findings

CVF-1 Minor Procedural Fixed
CVF-2 Minor Bad datatype Info
CVF-3 Minor Suboptimal Info
CVF-4 Minor Procedural Info
CVF-5 Minor Documentation Info
CVF-6 Minor Documentation Fixed
CVF-7 Moderate Flaw Fixed
CVF-8 Moderate Overflow/Underflow Fixed
CVF-9 Moderate Overflow/Underflow Info
CVF-10 Minor Bad datatype Fixed
CVF-11 Major Unclear behavior Fixed
CVF-12 Minor Suboptimal Fixed
CVF-13 Moderate Overflow/Underflow Fixed
CVF-14 Major Unclear behavior Fixed
CVF-15 Moderate Overflow/Underflow Fixed
CVF-16 Minor Procedural Fixed
CVF-17 Minor Bad datatype Info
CVF-18 Minor Bad naming Info
CVF-19 Minor Bad naming Info
CVF-20 Minor Procedural Info
CVF-21 Minor Documentation Fixed
CVF-22 Minor Documentation Fixed
CVF-23 Minor Unclear behavior Info
CVF-24 Minor Unclear behavior Info
CVF-25 Minor Documentation Info
CVF-26 Minor Documentation Fixed

CVF-27 Minor Documentation Info

CVF-28 Minor Bad datatype Info
CVF-29 Minor Bad datatype Info
CVF-30 Major Unclear behavior Info
CVF-31 Moderate Unclear behavior Fixed
CVF-32 Minor Bad datatype Info
CVF-33 Moderate Unclear behavior Fixed
CVF-34 Minor Unclear behavior Info
CVF-35 Minor Unclear behavior Info
CVF-36 Major Documentation Info
CVF-37 Minor Unclear behavior Info
CVF-38 Minor Documentation Fixed
CVF-39 Major Unclear behavior Fixed
CVF-40 Minor Unclear behavior Fixed
CVF-41 Minor Suboptimal Info
CVF-42 Minor Unclear behavior Info
CVF-43 Minor Suboptimal Fixed
CVF-44 Minor Bad datatype Info
CVF-45 Minor Overflow/Underflow Info
CVF-46 Minor Unclear behavior Fixed
CVF-47 Minor Unclear behavior Info
CVF-48 Minor Unclear behavior Info
CVF-49 Critical Flaw Fixed
CVF-50 Minor Suboptimal Info
CVF-51 Minor Suboptimal Fixed
CVF-52 Minor Documentation Fixed
CVF-53 Moderate Flaw Fixed
CVF-54 Minor Readability Fixed
CVF-55 Moderate Unclear behavior Info
CVF-56 Major Unclear behavior Info

CVF-57 Minor Suboptimal Fixed

CVF-58 Moderate Flaw Info
CVF-59 Minor Documentation Fixed
CVF-60 Major Suboptimal Fixed
CVF-61 Moderate Unclear behavior Info
CVF-62 Minor Suboptimal Info
CVF-63 Minor Suboptimal Fixed
CVF-64 Minor Procedural Fixed
CVF-65 Minor Suboptimal Fixed
CVF-66 Minor Suboptimal Info
CVF-67 Minor Suboptimal Info
CVF-68 Minor Procedural Info
CVF-69 Minor Suboptimal Fixed
CVF-70 Critical Flaw Fixed
CVF-71 Minor Readability Info
CVF-72 Minor Bad datatype Info
CVF-73 Minor Overflow/Underflow Info
CVF-74 Minor Suboptimal Info
CVF-75 Minor Procedural Info
CVF-76 Minor Bad datatype Info
CVF-77 Minor Procedural Info
CVF-78 Minor Bad datatype Info
CVF-79 Minor Suboptimal Info
CVF-80 Minor Procedural Info
CVF-81 Minor Documentation Info
CVF-82 Minor Documentation Info
CVF-83 Minor Bad datatype Info
CVF-84 Minor Procedural Info
CVF-85 Minor Procedural Info
CVF-86 Minor Bad naming Info

CVF-87 Minor Documentation Info

CVF-88 Minor Documentation Fixed
CVF-89 Minor Procedural Info
CVF-90 Minor Unclear behavior Info
CVF-91 Minor Unclear behavior Info
CVF-92 Major Unclear behavior Info
CVF-93 Minor Bad datatype Info
CVF-94 Minor Unclear behavior Info
CVF-95 Major Flaw Info
CVF-96 Minor Procedural Info
CVF-97 Minor Bad naming Info
CVF-98 Minor Bad naming Info
CVF-99 Minor Procedural Info
CVF-100 Minor Bad naming Info

CVF-101 Minor Bad naming Info

ParaSpace-tv v

Review ABDK

Contents

1 Document properties 10

2 Introduction 11
2.1 ADOUL ABDK ...ttt 11
2.2 DS AIMET ..ot eas 11
2.3 MeTNOUOIOGY......cuieiiieieceeeeee et 12

3 Detailed Results 13
3.1 CVF-1 o e e e e e e e e 13
3.2 CVF-2 e e e e 13
3.3 CVF-3 . o e e e e e e e e e e 13
3.4 CVF-4 o . e e 14
3.5 CVF-5 . o e e e e e e e e e 14
3.6 CVF-6 . . . o e e e e e e e e e e e 15
3.7 CVF-7 o e e e e e e 16
3.8 CVF-8 . . . o e e e e e e e e e 16
3.9 CVF-9 . . e e e e e e 16
3.10 CVF-T10 . o o e e e e e e e e e e e e e 17
301 CVF-TT L e e e e e e e 17
312 CVF-12 o e e e e e e 17
313 CVF-13 e e e e e e e e e e e 18
3.14 CVF-14 . e e e e e e 18
315 CVF-15 e e e e e e e e e 19
316 CVF-16 . . o e e e e e e e e e e e 19
307 CVF-17 e e e e e e e e 19
318 CVF-18 . . e e e e e e e e e e 20
319 CVF-19 . e e e e e e e e e e 20
3.20 CVF-20 . . . o e e e e e e e e e e e 20
3.21 CVF-2T1 . o e e e e e e e 21
3.22 CVF-22 . o e e e e e e e e e 21
3.23 CVF-23 . . o e e e e e e e e e e e 22
3.24 CVF-24 . . . e e e e e e e e 22
3.25 CVF-25 . . e e e e e e e e e 23
3.26 CVF-26 o e e e e e e e e e e 23
3.27 CVF-27 . o e e e e e e e 23
3.28 CVF-28 . . o e e e e e e e e e e e 24
3.29 CVF-29 . . . e e e e e e e e 24
3.30 CVF-30 . . . o e e e e e e e e e e e 24
3.31 CVF-3T . e e e e e e e e e e e e 25
3.32 CVF-32 . . o e e e e e e e e e e e 25
3.33 CVF-33 . . e e e e e e e e e 25
3.34 CVF-34 e e e e e e e e e 26
3.35 CVF-35 . . e e e e e e e e e e e e e 26
3.36 CVF-36 o e e e e e e e e 27
3.37 CVF-37 . e e e e e e e e e e e e e e 27

ParaSpace-tv

Review ABDK

3.38 CVF-38 . . . e e
3.39 CVF-39 . L e e
3.40 CVF-40 e e
3.41 CVE-41 o e e
3.42 CVF-42 . o e e e
3.43 CVF-43 . e e e
3.44 CVF-44 . . e e
3.45 CVF-45 . e e
346 CVF-46 e e e
3.47 CVF-47 e e e
3.48 CVF-48 . . . o e e e
3.49 CVF-49 . . . e e
3.50 CVF-50 . . . e e e
3.51 CVE-5T1 o e
3.52 CVF-52 . . e e
53 CVF-53 L o e
4 CVF-54 . o e e
5 CVF-55 e
6 CVF-56 . . . e
7 CVF-57 e e e
8 CVF-58 . . e
9 CVF-59 . .
3.60 CVF-60 e e e
3.61 CVF-61 . . e e e
3.62 CVF-62 . . . o e e e
3.63 CVF-63 . . . e e e
3.64 CVF-64 e e e
3.65 CVF-65 . . .
3.66 CVF-66 e e e
3.67 CVF-67 . . o e e e e
3.68 CVF-68 e e
3.69 CVF-69 e
70 CVF-70 . o o e e
71 CVE-71 e e
72 CVF-72 e e e
73 CVF-73 e e
74 CVE-74 . e e e
75 CVF-75 e e
76 CVF-76 . . o e e e
77 CVF-77 e e e e
7
7
8
8
8
8

3.
3.5
3.5
3.5
3.5
3.5
3.5

8 CVF-78 . e e
9 CVF-79 o e e
0 CVF-80 . . . e e
T CVE-8T e
2 CVF-82 e e

3.
3.
3.
3.
3.
3.
3.
3.
3.
3.
3.
3.
3.
3.83 CVF-83 . . .

ParaSpace-tv v

Review ABDK

3.84 CVF-84 . . . o e

3.85 CVF-85 . L o e

3.86 CVF-86 . . . o e
3.87 CVF-87 o o o
3.88 CVF-88 . . o o e
3.890 CVF-89 . . o
3.90 CVF-90 . . e
391 CVE-OT1 o e
3.92 CVF-92 . L o e
3.93 CVF-93 . L
3.94 CVF-94 . L e
3.95 CVF-95 . L o e
396 CVF-96 . . . o e
3.97 CVF-97 o e
3.98 CVF-98 . . o o e
3.99 CVF-99 . L e

JOTCVE=TOT ettt

ParaSpace-tv <
Review ABDK

1 Document properties

Version
0.1 July 29, 2022 D. Khovratovich Initial Draft
0.2 July 29, 2022 D. Khovratovich Minor revision
1.0 July 29, 2022 D. Khovratovich Release
Contact

D. Khovratovich

khovratovich@gmail.com

10

mailto:khovratovich@gmail.com

ParaSpace-tv Vv
Review ABDK

2 Introduction

The following document provides the result of the audit performed by ABDK Consulting at
the customer request. The audit goal is a general review of the smart contracts structure,
critical/major bugs detection and issuing the general recommendations.

We have reviewed the contracts at commit a8f47b0b:

- interfaces/IERC20Like.sol

- interfaces/IERC4626.s0l

- interfaces/IEToken.sol

- interfaces/IPool.sol

+ interfaces/IYVToken.sol

- Pool/Modules/PoolEuler.sol
- Pool/Modules/PoolNonTv.sol
+ Pool/Modules/PoolYearnVault.sol
+ Pool/Pool.sol

- Pool/PoolErrors.sol

+ Pool/PoolEvents.sol

+ Pool/Poollmports.sol

+ YieldMath.sol

The fixes were provided in a new pull request.

2.1 About ABDK

ABDK Consulting, established in 2016, is a leading service provider in the space of blockchain
development and audit. It has contributed to numerous blockchain projects, and co-authored
some widely known blockchain primitives like Poseidon hash function. The ABDK Audit
Team, led by Mikhail Vladimirov and Dmitry Khovratovich, has conducted over 40 audits of
blockchain projects in Solidity, Rust, Circom, C++, JavaScript, and other languages.

2.2 Disclaimer

Note that the performed audit represents current best practices and smart contract standards
which are relevant at the date of publication. After fixing the indicated issues the smart
contracts should be re-audited.

11

https://github.com/yieldprotocol/yieldspace-tv/tree/a8f47b0bb660df7a688beb2782a4d501d5d6c101
https://github.com/yieldprotocol/yieldspace-tv/pull/31
https://abdk.consulting/
https://poseidon-hash.info/

ParaSpace-tv v
Review ABDK

2.3 Methodology

The methodology is not a strict formal procedure, but rather a collection of methods and
tactics that combined differently and tuned for every particular project, depending on the
project structure and and used technologies, as well as on what the client is expecting from
the audit. In current audit we use:

+ General Code Assessment. The code is reviewed for clarity, consistency, style, and
for whether it follows code best practices applicable to the particular programming lan-
guage used. We check indentation, naming convention, commented code blocks, code
duplication, confusing names, confusing, irrelevant, or missing comments etc. At this
phase we also understand overall code structure.

+ Entity Usage Analysis. Usages of various entities defined in the code are analysed.
This includes both: internal usages from other parts of the code as well as potential
external usages. We check that entities are defined in proper places and that their
visibility scopes and access levels are relevant. At this phase we understand overall
system architecture and how different parts of the code are related to each other.

+ Access Control Analysis. For those entities, that could be accessed externally, access
control measures are analysed. We check that access control is relevant and is done
properly. At this phase we understand user roles and permissions, as well as what assets
the system ought to protect.

+ Code Logic Analysis. The code logic of particular functions is analysed for correctness
and efficiency. We check that code actually does what it is supposed to do, that
algorithms are optimal and correct, and that proper data types are used. We also check
that external libraries used in the code are up to date and relevant to the tasks they solve
in the code. At this phase we also understand data structures used and the purposes
they are used for.

12

2

34

54

ParaSpace-tv <

Review ABDK
3 Detailed Results
3.1 CVF-1

. Severity Minor - Status Fixed

+ Category Procedural - Source PoolNonTv.sol

Recommendation Should be “A0.8.0” or “A0.8.13" in case there is something special about
this particular version. Also relevant for the next files: YieldMath.sol, PoolEvents.sol, Pool-
Errors.sol, Pool.sol, PoolYearnVault.sol, Poollmports.sol, PoolEuler.sol, IYVToken.sol, IETo-
ken.sol, IERC4626.sol, IERC20Like.sol.

Listing 1:
pragma solidity >=0.8.13;

3.2 CVF-2
+ Severity Minor - Status Info
. Category Bad datatype - Source PoolNonTv.sol

Recommendation The types of these arguments could be more specific.

Listing 2:

address base_,
address fyToken_,

3.3 CVF-3
. Severity Minor - Status Info
+ Category Suboptimal - Source PoolNonTv.sol

Description This value is calcualted every time.

Recommendation Consider calculating once and storing in an internal variable.

Client Comment No thank you. Some small gas inefficiency is worth the trade off of intro-
ducing some relatively significant complexity as this fn is used by the constructor and therefore
may not access immutables so there would be a lot of new code added to the core contract
for the gas savings on just the PoolEuler.sol contract.

Listing 3:

return uint256(10%x* baseDecimals):

13

13

45

72

196

279

402

ParaSpace-tv v

Review ABDK
3.4 CVF-4

. Severity Minor - Status Info

+ Category Procedural - Source YieldMath.sol

Description We didn’t review these files.

import {Exp64x64} from "./Exp64x64 .sol";
import {Math64x64} from "./Math64x64 .sol";

3.5 CVF-5
. Severity Minor - Status Info
+ Category Documentation - Source YieldMath.sol

Description This looks like an internal document, referring to it from public source code looks

odd.
Recommendation Consider moving the content to a proper whitepaper and referring this

whitepaper instead.
Client Comment No thank you. It’s a list of links that includes the whitepaper and other

useful links.

/]| https://docs.google.com/spreadsheets/d/14
«— K_McZhlgSXQfienFGwDvDh4BmOu6_Hczi_sFreFfOE/

/% https://docs.google.com/spreadsheets/d/14
«— K_McZhlgSXQfi6nFGwDvDh4BmOu6_Hczi_sFreFfOE/

[* https://docs.google.com/spreadsheets/d/14
«— K_McZhlgSXQfionFGwDvDh4BmOu6_Hczi_sFreFfOE/

[* https://docs.google.com/spreadsheets/d/14
«— K_McZhlgSXQfionFGwDvDh4BmOu6_Hczi_sFreFfOE/

[* https://docs.google.com/spreadsheets/d/14
«— K_McZhlgSXQfionFGwDvDh4BmOu6_Hczi_sFreFfOE/

89

96
110
120
219
226
229
304
311
325
333
417
421

424

ParaSpace-tv v

Review ABDK
3.6 CVF-6

. Severity Minor - Status Fixed

+ Category Documentation - Source YieldMath.sol

Description The “pow(x, v, z)” function not just calculates xA(y/z) but also normalizes the
result to fit into 64.64 fixed point number, i.e. it actually calculates: xA(y/z) * (2A63)A(1 -

y/2)
Recommendation Consider mentioning this fact in comments.

/] za = c/u % (normalizedSharesReserves *xx*x a)
/] ya = fyTokenReserves *xx a
/] zxa = c/y k% ZX *%* a
/] result =fyTokenReserves — (sum *xx*x (1/a))
// za = c/u % (normalizedSharesReserves % a)
/] ya = fyTokenReserves *x%* a
/] yxa = (fyTokenReserves + x) *x*x a # x is aka Ay
// za = c/u % (normalizedSharesReserves *xx*x a)
/] ya = fyTokenReserves %% a
/] zxa = C/p % zZX *x a
/] result =fyTokenReserves — (sum *xx*x (1/a))

// za =c/py *x (normalizedSharesReserves xx*x a)

/] ya = fyTokenReserves xx a

// yxa = (fyTokenReserves — x) *%* ap

15

ParaSpace-tv <

Review ABDK
3.7 CVF-7

. Severity Moderate - Status Fixed

+ Category Flaw - Source YieldMath.sol

Description The “sum” value is not checked to fit into 128 bits.
Recommendation Consider adding appropriate check.

Listing 7:

117 sum = za + ya — zxa;

3.8 CVF-8
. Severity Moderate - Status Fixed
. Category Overflow/Underflow - Source YieldMath.sol

Description Underflow is possible here.

Listing 8:

117 sum = za + ya — zxa;

3.9 CVF-9
+ Severity Moderate - Status Info
. Category Overflow/Underflow - Source YieldMath.sol

Description Overflow is possible when converting “sum” to “uint128”.
Client Comment Duplicate of 92.

Listing 9:

123 (fyTokenOut = uint256(fyTokenReserves) — uint256(uint128(sum).
«— pow(ONE, a))) <= MAX,

16

ParaSpace-tv <

Review ABDK
3.10 CVF-10

. Severity Minor - Status Fixed

+ Category Bad datatype - Source YieldMath.sol

Recommendation The value “1e12” should be a named constant.
Client Comment "error guards" removed, added additional documentation.
Listing 10:

127 fyTokenOut = fyTokenOut < MAX — 1el12 ? fyTokenOut + 1el12 : MAX;
«— [/ Add error guard, ceiling the result at max

3.11 CVF-11

+ Severity Major - Status Fixed

. Category Unclear behavior - Source YieldMath.sol

Desaription Despite the comment, this line not only ceils the result at max, but also increases
the result by Tel2.

Recommendation Consider explaining this behavior.

Client Comment "error guards" removed, added additional documentation.

Listing 11:

127 fyTokenOut = fyTokenOut < MAX — 1el12 ? fyTokenOut + 1el12 : MAX;
«— [/ Add error guard, ceiling the result at max

3.12 CVF-12
. Severity Minor - Status Fixed
+ Category Suboptimal - Source YieldMath.sol

Description Brackets around “zaYaYxa” are redundant.
Recommendation Consider removing them.
Listing 12:

236 int128(uint128((zaYaYxa).divu(uint128(c.div(mu)))).pow(uint128(
«— ONE), uint128(a)))

17

ParaSpace-tv v

Review ABDK
3.13 CVF-13

. Severity Moderate - Status Fixed

+ Category Overflow/Underflow - Source YieldMath.sol

Description Overflow is possible when converting to “int128".
Recommendation Consider using safe conversion.

Listing 13:

236 int128 (uint128((zaYaYxa).divu(uint128(c.div(mu)))).pow(
«— uint128(ONE), uint128(a)))

239 require(rightTerm <= int128(sharesReserves), "ParaMath: Rate
— underflow");

431 int128(uintl128(zaYaYxa.divu(uint128(c.div(mu)))).pow(uintl128
«— (ONE), uint128(a)))

434 require(subtotal >= int128(sharesReserves), "ParaMath: Rate
— underflow");

3.14 CVF-14
+ Severity Major - Status Fixed
+ Category Unclear behavior - Source YieldMath.sol

Description Despite the comment, this line not only floors the result at zero, but also de-
creases the result by 1el2.

Recommendation Consider explaining this behavior.

Client Comment "error guards” removed,added additional documentation.

Listing 14:

340 result =result>1el12 ? result —1el12 : 0; // Subtract error
«— guard, flooring the result at zero

18

ParaSpace-tv <

Review ABDK
3.15 CVF-15

. Severity Moderate - Status Fixed

+ Category Overflow/Underflow - Source YieldMath.sol

Description Underflow is possible here.
Recommendation Consider adding an appropriate underflow check.

Listing 15:
425 uint256 yxa = (fyTokenReserves — fyTokenOut).pow(a, ONE);

436 return uintl28(subtotal) — sharesReserves;

3.16 CVF-16
+ Severity Minor - Status Fixed
. Category Procedural - Source YieldMath.sol

Description The body of this block is not properly indented.
Recommendation Consider indenting.

Listing 16:
473 unchecked {

3.17 CVF-17
. Severity Minor - Status Info
. Category Bad datatype - Source YieldMath.sol

Recommendation The value “1e18” should be a named constant.
Client Comment No thank you, 1e18 is recognizable enough.

Listing 17:
484 uint256 result_ = uint256(uint128(sum).pow(ONE, wuintl128(a))) *x 1
— el18 / totalSupply;

19

12

15

19
36

ParaSpace-tv <

Review ABDK
3.18 CVF-18

. Severity Minor - Status Info

+ Category Bad naming - Source PoolEvents.sol

Recommendation Events are usually named via nouns, such as “Fees”.
Client Comment No thank you. Never seen that using nouns before, actually.

Listing 18:
event FeesSet(uint16 glFee);

3.19 CVF-19
. Severity Minor - Status Info
+ Category Bad naming - Source PoolEvents.sol

Description The names of these events looks odd.

Recommendation Consider using more conventional names.
Client Comment No thank you. These events are described in pool life cycle haiku in

Pool.sol.

event gg() ;
event gm() ;
3.20 CVF-20
. Severity Minor - Status Info
+ Category Procedural - Source PoolEvents.sol

Recommendation The maturity parameter should probably be indexed as it is used to identify
asssets involved.

Client Comment No thank you. The maturity is the same for all Trade events emitted by
this contract.

Listing 20:

uint32 maturity ,

event Trade (uint32 maturity , address indexed from, address
— indexed to, int256 base, int256 fyTokens);

83

ParaSpace-tv <

Review ABDK
3.21 CVF-21

. Severity Minor - Status Fixed

+ Category Documentation - Source Pool.sol

Description The comment about “fyYVDAI” is confusing. It is unclear why one could suggest
that it is “fyYVDAI".

Recommendation Consider removing the comment or clarifying it.

Listing 21:

//] The fyToken for the corresponding base token. It’s not
— fyYVDAI, it’s still fyDAl. Even though we convert base

3.22 CVF-22
+ Severity Minor - Status Fixed
. Category Documentation - Source Pool.sol

Recommendation “Whent” -> “When”.

Listing 22:

89 /// Whent these are deposited into a tokenized vault they become

«— shares.

21

ParaSpace-tv v
Review ABDK

3.23 CVF-23

. Severity Minor - Status Info

+ Category Unclear behavior - Source Pool.sol

Description In ERC-20 the “decimals” property is used by Ul to render token amounts in a
human-readable way. Using this property in smart contracts is discouraged.
Recommendation Consider treating all token amounts as integers.

Client Comment We use them to calculate prices (because we need to know how much is
one unit), and to calculate the scalingFactor.

On the prices Mikhail is right, and is the same idea behind that article | wrote about oracle
prices. Unfortunately, the ParaSpace-tv formulas use prices, and not integer amounts, so no
chance.

On using decimals to calculate the scalingFactor, it’s actually true that we are making a minor
mistake, because there we are assuming that 1 unit == $1, and scaling our inputs to YieldMath
so that the losses due to precision stay in a certain range. However, with ETH being $1000,
we are allowing x1000 the precision losses in monetary terms. Fine for this release, but we
should fix it in a later release. Either we take the scalingFactor as a constructor parameter,
which is error-prone, or we swap to solmate pow and do full-precision math, removing the
scalingFactor altogether.

94 uint256 public immutable baseDecimals;

182

97

100

baseDecimals = baseToken_.decimals();

3.24 CVF-24

. Severity Minor - Status Info

+ Category Unclear behavior - Source Pool.sol

Recommendation As “IERC4626” extends “IERC20”, it would be more logical to declare
this variable as “IERC4626”, so it could be used as both, “lERC20” and “IERC4626” without
casting.

Client Comment No thank you. We feel it would be more confusing to use IERC4626 with
non-4626 compliant tokens as is the case with all of our currently deployed pools (PoolEuler.sol

/ PoolNonTv.sol).

Listing 24:

/]| @dev For most of this contract, only the ERC20 functionality
«— of the shares token is required. As such, shares
//] are cast as "IERC20Like" and when that 4626 functionality is

«— needed, they are recast as |IERC4626.
IERC20Like public immutable sharesToken ;

22

99

102

ParaSpace-tv <

Review ABDK
3.25 CVF-25

. Severity Minor - Status Info

+ Category Documentation - Source Pool.sol

Recommendation “wei” -> “way”.
Client Comment No thank you. This is the wei.

Listing 25:

/// This wei, modules for non-4626 compliant base tokens can
«— import this contract and override 4626 specific fn’s.

3.26 CVF-26
+ Severity Minor - Status Fixed
. Category Documentation - Source Pool.sol

Description This comment suggest that the “ts” value is always 1 / seconds in 10 years, while
actually it is a constructor argument.

Recommendation Consider rephrasing the comment.

/// Time stretch == 1 / secondsin 10 years (64.64)
intl128publicimmutable ts;
3.27 CVF-27

. Severity Minor - Status Info

. Category Documentation - Source Pool.sol

Description These “not 64.64" remarks are confusing, as they give no clue about the actual
number format of the variables.

Recommendation Consider explaining the actual number format.
Client Comment No thank you. This presents a clear difference between the 64bit and

non-64bit numbers which many non-mathemeticians struggle with upon initial review.

Listing 27:

108 /// Pool’s maturity date (not 64.64)

111

/// Used to scale up to 18 decimals (not 64.64)

152

153

154

ParaSpace-tv <

Review ABDK
3.28 CVF-28

. Severity Minor - Status Info

+ Category Bad datatype - Source Pool.sol

Recommendation The type of this argument should be “IERC20".
Client Comment No thanks, we use the address directly in the constructor.

Listing 28:
address sharesToken_, // address of shares token
3.29 CVF-29

. Severity Minor - Status Info

. Category Bad datatype - Source Pool.sol

Recommendation The type of this argument should be “IFYToken”.
Client Comment No thanks, we use the address directly in the constructor.

Listing 29:
address fyToken_, // address of fyToken

3.30 CVF-30
+ Severity Major - Status Info
. Category Unclear behavior - Source Pool.sol

Description There is no range check for this argument.

Recommendation Consider adding appropriate checks.

Client Comment No thank you. We will include such checks off-chain as part of the deploy-
ment testing harness.

Listing 30:
int128 ts_, // time stretch(64.64)

ParaSpace-tv <

Review ABDK
3.31 CVF-31

. Severity Moderate - Status Fixed

+ Category Unclear behavior - Source Pool.sol

Desaiption Here a “uint32” value is checked to be greater than the “uint32” maximum value,
which could never be true.

Recommendation Consider using a safe conversion function instead.

Listing 31:
168 if ((maturity = uint32 (IFYToken(fyToken_). maturity())) > type (
— uint32).max) revert MaturityOverflow();

3.32 CVF-32
+ Severity Minor - Status Info
. Category Bad datatype - Source Pool.sol

Recommendation The value “10000” should be a hamed constant.
Client Comment No thank you, this is by design.

Listing 32:

196 if ((gl1Fee = glFee_) > 10000) revert InvalidFee(glFee_);
1236 return uint256(glFee_).fromUInt().div(uint256(10000).fromUnt())

—
¢)

1252 return int128 (ParaMath .ONE). div(uint256(glFee_).fromUInt() . div (
— uint256(10000).fromUInt()));

1385 if (glFee_ > 10000) {

3.33 CVF-33
+ Severity Moderate - Status Fixed
+ Category Unclear behavior - Source Pool.sol

Description The returned value is ignored.
Recommendation Consider reverting in case false was returned.

Listing 33:

203 baseToken_.approve (sharesToken_ , type (uint256).max);

25

248
289
339
365

ParaSpace-tv v

Review ABDK
3.34 CVF-34

. Severity Minor - Status Info

+ Category Unclear behavior - Source Pool.sol

Description A user may want to set the maximum remainder amount.

Recommendation Consider adding such argument.

Client Comment Acknowledged. We will discuss this internally and consider updating in the
future.

Listing 34:

/// @param remainder Wallet receiving any surplus base .
address remainder ,
address remainder |,

/// @param remainder Wallet receiving any surplus base .

3.35 CVF-35
. Severity Minor - Status Info
. Category Unclear behavior - Source Pool.sol

Description It is unclear why this limit is needed. Usually, the more shares a user will bet for
his fyToken, the better.

Recommendation Consider removing this limit.
Client Comment Acknowledged. We will discuss this internally and consider updating in the
future.

Listing 35:

250 /// @param maxRatio Maximum ratio of shares to fyToken in the

342

«— pool (fp18).

uint256 maxRatio

368 /// @param maxRatio Maximum ratio of shares to fyToken in the

«— pool (fp18).

26

251

284

334

369

253
350
383

ParaSpace-tv v

Review ABDK
3.36 CVF-36

+ Severity Major - Status Info

+ Category Documentation - Source Pool.sol

Description Actually, the amount of base found and the amount of base used for the mint
could be different, as there could be remainder returned to the caller. Actually, the found
amount is returned while the used amount would probably be more interesting.
Recommendation Consider returning the actually used amount and rephrasing the comment.
Client Comment No thank you. It would require extra gas and it was requested by the front
end team. We may address it later.

Listing 36:

//] @return baseln The amount of base found in the contract that
«— was used for the mint.

/// @return baseln The amount of base found that was used for
«— the mint.

/// @return baseln The amount of base found that was used for
«— the mint.

/// @return baseln The amount of base found that was used for
«— the mint.

3.37 CVF-37
+ Severity Minor - Status Info
+ Category Unclear behavior - Source Pool.sol

Description A user may want to limit the minimum amount of liquidity minted.
Recommendation Consider adding such argument.

Client Comment Acknowledged. We will discuss this internally and consider updating in the
future.

Listing 37:

/]| @return IpTokensMinted The amount of LP tokens minted .
uint256 IpTokensMinted
uint256 IpTokensMinted

27

277

290

ParaSpace-tv <

Review ABDK
3.38 CVF-38

. Severity Minor - Status Fixed

+ Category Documentation - Source Pool.sol

Description Not only “supply > 0” check is skipped, but also “supply == 0” check is added.
Recommendation Consider mentioning this fact in the comment.
Listing 38:

/]| @dev This is the exact same as mint () but with auth added
«— and skip the supply >0 check.

3.39 CVF-39
+ Severity Major - Status Fixed
. Category Unclear behavior - Source Pool.sol

Description These arguments doesn’t make sense for the initial minting.
Recommendation Consider removing them.

Listing 39:

uint256 minRatio ,
uint256 maxRatio

3.40 CVF-40
. Severity Minor - Status Fixed
+ Category Unclear behavior - Source Pool.sol

Description In case “realFYTokenCached_” is zero, “minRatio” and “maxRatio” are ignored,
while such situation could be thought as an infinity ratio. It seems weird, that “maxRatio” set
to a finite value will effectively forbid finite ratios above this value, but will not forbid infinite
ratio.

Recommendation Consider requiring “maxRatio” to be “infinite”, when “realFYTokenCached”
is zero. “Infinite” could be coded as type(uint256).max.

Listing 40:

398 if (realFYTokenCached_ != 0) {

575 if (realFYTokenCached_ != 0) {

400

401

ParaSpace-tv v

Review ABDK
3.41 CVF-41

. Severity Minor - Status Info

+ Category Suboptimal - Source Pool.sol

Description The expression “uint256(cache.sharesCached).wdiv(realFYTokenCached_)” is
calculated twice.

Recommendation Consider calculating once and reusing.
Client Comment Acknowledged. We will discuss this internally and consider updating in the
future.

Listing 41:

uint256 (cache. sharesCached) . wdiv (realFYTokenCached_) <
«— minRatio ||
uint256 (cache. sharesCached) . wdiv(realFYTokenCached_) >
«— maxRatio
) revert SlippageDuringMint((uint256 (cache. sharesCached) x 1e18)
«— | realFYTokenCached_, minRatio, maxRatio);

3.42 CVF-42
. Severity Minor - Status Info
+ Category Unclear behavior - Source Pool.sol

Description The “wdiv” value is calculated with rounding down, so the actual returned value
could be less than the precise value. Thus, if the returned value equals to “maxRatio”, the
precise value could be greater than “maxRatio”.

Recommendation Consider rounding up.
Client Comment Acknowledged. We will discuss this internally and consider updating in the
future.

Listing 42:

uint256 (cache . sharesCached) . wdiv (realFYTokenCached_) > maxRatio

29

ParaSpace-tv <

Review ABDK
3.43 CVF-43

. Severity Minor - Status Fixed

+ Category Suboptimal - Source Pool.sol

Description Here, the logic of the “wdiv’ function is reimplemented.
Recommendation Consider using the function.

Listing 43:

402) revert SlippageDuringMint((uint256 (cache. sharesCached) x 1el18)
— | realFYTokenCached_, minRatio, maxRatio);

3.44 CVF-44
+ Severity Minor - Status Info
. Category Bad datatype - Source Pool.sol

Recommendation The value “1e18” should be a named constant.
Client Comment No thank you.

Listing 44:

402) revert SlippageDuringMint((uint256 (cache . sharesCached) x 1el18)
«— | realFYTokenCached_, minRatio, maxRatio);

30

ParaSpace-tv v

Review ABDK
3.45 CVF-45

. Severity Minor - Status Info

+ Category Overflow/Underflow - Source Pool.sol

Description Phantom overflow is possible here, i.e. a situation when the final calculation
result would fit into the destination type, while some intermediary calculation overflows.
Recommendation Consider using the “muldiv’ function as described here: https://xn-2-
umb.com/21/muldiv/

Client Comment Acknowledged. We will discuss this internally and consider updating in the

future.
Listing 45:
402) revert SlippageDuringMint((uint256(cache.sharesCached) % 1
«— e18) / realFYTokenCached_, minRatio, maxRatio);
415 IpTokensMinted = (supply % shareslin) / cache.sharesCached ;
432 sharesin = sharesToSell + ((cache .sharesCached +
— sharesToSell) x IpTokensMinted) / supply;
1170 currentCumulativeRatio_ = cumulativeRatioLast + (fyTokenCached x

«— timeElapsed). rdiv(_mulMu(sharesCached));

1279 return (_getSharesBalance () * _getCurrentSharePrice()) / 10xx%
— baseDecimals ;

3.46 CVF-46
. Severity Minor - Status Fixed
. Category Unclear behavior - Source Pool.sol

Description In case realFYTokenCached_ < fyTokenToBuy, this will revert.
Recommendation Consider handling this case separately.

Listing 46:

430 IpTokensMinted = (supply * (fyTokenToBuy + fyTokenln)) / (
«— realFYTokenCached_ — fyTokenToBuy);

31

432

500

535

560

ParaSpace-tv v

Review ABDK
3.47 CVF-47

. Severity Minor - Status Info

+ Category Unclear behavior - Source Pool.sol

Description Here, the number of shares to be taken from the caller is calculating wounded
down, i.e. towards the user.

Recommendation Consider calculating rounding up, i.e. towards the pool.
Client Comment Acknowledged. We will discuss this internally and consider updating in the
future.

Listing 47:

sharesln = sharesToSell + ((cache .sharesCached + sharesToSell) x
— |pTokensMinted) / supply;

3.48 CVF-48
. Severity Minor - Status Info
+ Category Unclear behavior - Source Pool.sol

Description The caller may want to set the minimum output amounts.

Recommendation Consider adding such arguments.
Client Comment Acknowledged. We will discuss this internally and consider updating in the
future.

Listing 48:

uint256 baseOut
uint256 fyTokenOut

) external virtual override returns (uint256 IpTokensBurned ,
— uint256 baseOut) {

uint256 baseOut ,
uint256 fyTokenOut

32

ParaSpace-tv <

Review ABDK
3.49 CVF-49

+ Severity Critical - Status Fixed

+ Category Flaw - Source Pool.sol

Description Here “baseOut” is guaranteed to be zero.
Recommendation Should be “sharesOut” instead.

Listing 49:

591 (cache.sharesCached — baseOut.ul28()) *x scaleFactor_, //
«— Cache, minus virtual burn

33

591

600
731

740
845

854
945

954
1042

1050

ParaSpace-tv v
Review ABDK

3.50 CVF-50

. Severity Minor - Status Info

+ Category Suboptimal - Source Pool.sol

Description Here token amounts in arguments are multiplied by “scaleFactor” and the resulting
amount is divided by “scaleFactor”. This looks like an unnecessary complication, as in theory
this shouldn’t affect the final result.

Recommendation Consider removing redundant operations.
Client Comment Acknowledged. We would remove the scale factor if we move to full

precision ‘pow* later on.

Listing 50:

(cache . sharesCached — baseOut.ul128()) * scaleFactor_, //
— Cache, minus virtual burn

(cache .fyTokenCached - fyTokenOut.ul128()) % scaleFactor_
«—,// Cache, minus virtual burn

fyTokenOut.ul128() * scaleFactor_, //
«— Sell the virtual fyToken

— obtained
scaleFactor_;

sharesBalance * scaleFactor_,
fyTokenBalance % scaleFactor_,
sharesQut % scaleFactor_,

scaleFactor_;

sharesBalance * scaleFactor_,
fyTokenBalance % scaleFactor_,
fyTokenOut * scaleFactor_,

scaleFactor_;

sharesBalance * scaleFactor_,
fyTokenBalance % scaleFactor_,
sharesln x scaleFactor_,

scaleFactor_;

sharesBalance * scaleFactor_,
fyTokenBalance % scaleFactor_,
fyTokenlIn % scaleFactor_ ,

) /| scaleFactor_;

34

594

607

607
806
912

ParaSpace-tv <

Review ABDK
3.51 CVF-51

. Severity Minor - Status Fixed

+ Category Suboptimal - Source Pool.sol

Description It looks reasonable to use “tradeToBase” after maturity, as there are no fyTokens
anymore.
Recommendation Consider just ignoring the “tradeToBase” flag after maturity instead of
reverting.

Client Comment Fixed, now we don’t allow any minting, or burnForBase, after maturity.

Listing 51:

maturity — uint32(block.timestamp), //
«— This can’t be called after maturity

3.52 CVF-52
. Severity Minor - Status Fixed
. Category Documentation - Source Pool.sol

Recommendation Consider adding a comment explaining why “IpTokensBurnoed” is sub-
tracted here, similar to the comment in “_mint”.

Listing 52:
(cache . fyTokenCached — fyTokenOut — IpTokensBurned).ul128(),

3.53 CVF-53
. Severity Moderate - Status Fixed
. Category Flaw - Source Pool.sol

Description If the updated “fyTokenCached” will be less than the totalSupply, his could lock
the pool.

Recommendation Consider adding an explicit “require” statement to prevent such situation.

Listing 53:
(cache . fyTokenCached — fyTokenOut — IpTokensBurned).u128(),

cache .fyTokenCached - fyTokenOut,

_update (sharesBalance , cache.fyTokenCached - fyTokenOut, cache.
«— sharesCached , cache.fyTokenCached);

669

ParaSpace-tv v

Review ABDK
3.54 CVF-54

. Severity Minor - Status Fixed

+ Category Readability - Source Pool.sol

Description it is unclear what “correct” means here.
Recommendation Consider rephrasing.

Listing 54:

//] The trader needs to have transferredin the correct amount
— of fyTokens in advance .

3.55 CVF-55
. Severity Moderate - Status Info
. Category Unclear behavior - Source Pool.sol

Description Both, “wrap” and “unwrap” could do rounding and most probably they round
towards the wrapper contract, i.e. agains the pool. So unwrapwrap(x)) could be less than x,
thus the caller may actually receive less than “baseQOut’ base tokens.

Recommendation Consider doing “sharesOut = sharesToken.withdraw(baseOut, to, this)” at
the beginning of the function to send exactly “baseQut” base tokens and calcualte the amount
of shares burned.

Client Comment We acknowledge this. It is not as easy as using previewWithdraw since
none of the current vault tokens support this. We are designing a solution around storing a
"pbuffer" of base tokens in the contract to make up for the very small (<0.01%) difference but
we will not be implementing that solution before we deploy the pool.

Listing 55:

683 uint128 sharesOut = _wrapPreview (baseOut).ul128();

701

_unwrap(to) ;

36

713

777

ParaSpace-tv v

Review ABDK
3.56 CVF-56

Severity Major - Status Info

Category Unclear behavior - Source Pool.sol

Description This transition from base to shares potentially rounds down, thus the resulting
amount of shares could be not enough to redeem the “baseOut” amount of base tokens.
Recommendation Consider using “previewWithdraw” instead of “previewDeposit”.

Client Comment We acknowledge this. It is not as easy as using previewWithdraw since
none of the current vault tokens support that fn. We are designing a solution around storing
a "buffer" of base tokens in the contract to make up for the very small (<0.01%) difference
but we will not be implementing that solution before we deploy the pool.

Listing 56:
_wrapPreview (baseOut) .ul128 (),

3.57 CVF-57
Severity Minor - Status Fixed
Category Suboptimal - Source Pool.sol

Description This argument is redundant, as a user implicitly specifies the maximum base
amount to be spent, by sending this amount to the contract before the call.
Recommendation Consider removing this argument.

Client Comment Fixed, removed logic and the related custom errors. Left the param in for
backwards compatability and a natspec saying it does nothing.

Listing 57:

//] @param max Maximum amount of base token that will be paid
— for the trade.

3.58 CVF-58
Severity Moderate - Status Info
Category Flaw - Source Pool.sol

Description This function doesn’t return the unused base tokens, so they remain unaccounted
and could be taken by anybody.

Recommendation Consider returning them to the caller.

Client Comment Acknowledged. This is known. It generally will be dust amounts. Further-
more, updating this would break backwards compatibility.

Listing 58:

779 function buyFYToken (

ParaSpace-tv v

Review ABDK
3.59 CVF-59

. Severity Minor - Status Fixed

+ Category Documentation - Source Pool.sol

Description The purpose of this check is unclear.
Recommendation Consider adding a comment.
Client Comment Fixed. Updated error name (the comment was already clear).

Listing 59:

856 uint128 newSharesMulMu = _mulMu(sharesBalance + shareslin).ul28()
if((fy’Token Balance — fyTokenOut) < newSharesMulMu) {
revert InsufficientFYTokenBalance(fyTokenBalance -
«— fyTokenOut, newSharesMulMu) ;

}

956 uint128 newSharesMulMu = _mulMu(sharesBalance + sharesin).ul28()
if (fyTokenBalance — fyTokenOut) < newSharesMulMu) {
revert InsufficientFYTokenBalance(fyTokenBalance -
«— fyTokenOut, newSharesMulMu) ;

}
3.60 CVF-60
+ Severity Major - Status Fixed
+ Category Suboptimal - Source Pool.sol

Description This call is redundant, it is needed only to check agains “min”.
Recommendation Just move the check after the “_upwrap” call and use the value returned

by “_unwrap”.

Listing 60:

1009 baseOut = _unwrapPreview (sharesOut).ul28() ;

38

1209

1212

1218

ParaSpace-tv v

Review ABDK
3.61 CVF-61

. Severity Moderate - Status Info

+ Category Unclear behavior - Source Pool.sol

Description Here “fyTokenCached_” is multiplied by “timeElapsed” and the product is cal-
culated as a “uint104” value, then converted to “uint256”. Thus, in case the product doesn’t
fit into “uint104” the transaction will be reverted.

Recommendation Consider converting “fyTokenCached_” to “uint256” first, and then mul-
tiplying by “timeElapsed”.

Client Comment Acknowledged. We would like to rewrite the contract to do a better job
with types of less than 256 bits. Basically we want to upcast whenever we load from storage
and then downcast (safely) before we store new values.But we will not get this done in time
for deployment this quarter.

Listing 61:

newCumulative RatioLast += uint256 (fyTokenCached_ % timeElapsed).
«— rdiv(mulMu(sharesCached_));

3.62 CVF-62
. Severity Minor - Status Info
+ Category Suboptimal - Source Pool.sol

Description There will be four SSTORE operations into the same slot.

Recommendation Consider refactoring to perform only one SSTORE.

Client Comment Acknowledged. We will discuss this internally and consider updating in the
future.

Listing 62:
block Timestamp Last = block Timestamp ;

cumulativeRatioLast = newCumulative Ratio Last ;

shares Cached = newSharesCached ;
fyTokenCached = newFYTokenCached ;

39

ParaSpace-tv <

Review ABDK
3.63 CVF-63

. Severity Minor - Status Fixed

+ Category Suboptimal - Source Pool.sol

Recommendation This could be simplified using the “divu” function: return
uint256(glFee_).divu(10000);
Listing 63:

1236 returnuint256(glFee_).fromUInt().div(uint256(10000). fromUint())

—
¢)

3.64 CVF-64
. Severity Minor - Status Fixed
+ Category Procedural - Source Pool.sol

Recommendation The value “uint256(10000).fromUInt()” could be precomputed.

Listing 64:
1236 returnuint256(gl1Fee_).fromUInt().div(uint256(10000). fromUint())

(—
)

3.65 CVF-65
. Severity Minor - Status Fixed
+ Category Suboptimal - Source Pool.sol

Recommendation This could be simplified using the “divu” function: return
uint256(10000).divu(glFee_);

Listing 65:

1252 returnint1 28 (ParaMath .ONE). div(uint256(glFee_).fromUInt(). div (
— uint256(10000) . fromUInt()));

ParaSpace-tv <

Review ABDK
3.66 CVF-66

. Severity Minor - Status Info

+ Category Suboptimal - Source Pool.sol

Description The expression “10**baseDecimals” is calculated every time.
Recommendation Consider calculating once and storing in an immutable variable.

Listing 66:

1279 return(_getSharesBalance () * _getCurrentSharePrice()) / 10%xx

«— baseDecimals ;

1293 uint256 scalar = 10%x% baseDecimals;

3.67 CVF-67
. Severity Minor - Status Info
. Category Suboptimal - Source Pool.sol

Recommendation This could be simplified using the “divu” function: return (_getCur-

rentSharePrice() * scaleFactor).divu(1el8);
Client Comment Some small gas inefficiency is worth the trade off of introducing some

relatively significant complexity.

Listing 67:

1306 return((_getCurrentSharePrice() * scaleFactor)).fromUInt().div(

— uint256(1el18).fromUInt());

41

1310

1319
1320

ParaSpace-tv v

Review ABDK
3.68 CVF-68

. Severity Minor - Status Info

+ Category Procedural - Source Pool.sol

Description The returned values are referred in the comment by names, while actually they
don’t have names.

Recommendation Consider naming them.
Client Comment Acknowledged. We will discuss this internally and consider updating in the
future.

Listing 68:

//] @return Cached shares token balance.

/]| @return Cached virtual FY token balance which is the actual
«— balance plus the pool token supply.

//] @return Timestamp that balances were last cached .

//] @return glFee This is a fp4 number where 10_000 is 1.

uint104 ,
uint104 ,
uint32 ,
uintlo

3.69 CVF-69

+ Severity Minor - Status Fixed

+ Category Suboptimal - Source Pool.sol

Recommendation This could be simplified using the “mulu” function: product = mu.mulu
(amount);

Listing 69:

1359 product = (amount * (mu.mul(uint256(1e18).fromUInt()).toUInt()))

— |/ 1el8;

42

ParaSpace-tv <

Review ABDK
3.70 CVF-70

+ Severity Critical - Status Fixed

+ Category Flaw - Source Pool.sol

Description The surplus shares balance is calculated, but base tokens are attempted to be
transferred without unwrapping. This makes the function useless.

Listing 70:

1367 retrieved = _getSharesBalance () — sharesCached; // Cache can
«— never be above balances
baseToken .safeTransfer(to, retrieved);

3.71 CVF-71
+ Severity Minor - Status Info
. Category Readability - Source Pool.sol

Description This double conversion looks ugly.

Recommendation Consider using “IERC20” instead of “IERC20Like” for simplicity and read-
ability.

Client Comment Both baseToken and sharesToken are of the type IERC20Like which may
introduce unnecessary complexity so it or may not make sense to remove IERC20Like entirely.

Listing 71:
1397 return IERC20(address (baseToken));

3.72 CVF-72
. Severity Minor - Status Info
. Category Bad datatype - Source PoolYearnVault.sol

Recommendation The types of these arguments could be more specific.

Listing 72:

38 address base_,
address fyToken_,

69
86

ParaSpace-tv v

Review ABDK
3.73 CVF-73

. Severity Minor - Status Info

+ Category Overflow/Underflow - Source PoolYearnVault.sol

Description Phantom overflow is possible here.

Recommendation Consider using the “muldiv’ function as described here: https://xn-2-
umb.com/21/muldiv/

Client Comment Acknowledged. We will discuss this internally and consider updating in the
future.

Listing 73:

shares = base_ * 10%xx baseDecimals / _getCurrentSharePrice()

base_ = shares x _getCurrentSharePrice() / 10%xx baseDecimals;

3.74 CVF-74

. Severity Minor - Status Info

+ Category Suboptimal - Source PoolYearnVault.sol

Description The expression “10**baseDecimals” is calculated every time.
Recommendation Consider calculating once and storing in an immutable variable.
Client Comment Acknowledged. We will discuss this internally and consider updating in the

future.

Listing 74:

69 shares = base_ % 10xx baseDecimals / _getCurrentSharePrice();

86 base_ = shares x _getCurrentSharePrice() / 10%x% baseDecimals;

44

10

13
16

22

ParaSpace-tv v
Review ABDK

3.75 CVF-75

. Severity Minor - Status Info

+ Category Procedural - Source Poollmports.sol

Description We didn’t review these files.
Client Comment Out of scope.

Listing 75:

import {CastU256U128} from "@yield-protocol/utils-v2/contracts/
— cast/CastU256U128.sol";

import {CastU256U104} from "@yield-protocol/utils-v2/contracts/
— cast/CastU256U104.sol";

import {CastU2561256} from "@yield-protocol/utils-v2/contracts/
— cast/CastU2561256.so0l";

import {CastU128U104} from "@yield-protocol/utils-v2/contracts/
— cast/CastU128U104.sol";

import {CastU1281128} from "@yield-protocol/utils-v2/contracts/

— cast/CastU1281128.sol";
import {Exp64x64} from "../Exp64x64.sol"

import {WDiv} from "@yield—protocol/utils —v2/contracts /math/WDiv

— .sol";
import {RDiv} from "@yield-protocol/utils-v2/contracts/math/RDiv
— .sol";

import {ERC20Permit} from "@yield-protocol/utils-v2/contracts/
«— token /ERC20Permit.sol ™

import {AccessControl} from "@yield-protocol/utils-v2/contracts
~— [access/AccessControl.sol™";

import {ERC20, IERC20Metadata as IERC20Like, IERC20} from "
— @yield—-protocol/utils—-v2/contracts/token /ERC20.s0l";

import {MinimalTransferHelper} from"@yield-protocol/utils-v2/

— contracts/token /MinimalTransferHelper.sol"

45

ParaSpace-tv <

Review ABDK
3.76 CVF-76

. Severity Minor - Status Info

+ Category Bad datatype - Source PoolEuler.sol

Recommendation The argument types could be more specific.

Listing 76:

38 address euler_, // The main Euler contractaddress
address eToken_,

40 address fyToken_,

3.77 CVF-77
. Severity Minor - Status Info
+ Category Procedural - Source PoolEuler.sol

Recommendation Consider putting this comment into the empty function body.
Client Comment No thank you.

Listing 77:

48 /// *xThis function is intentionally empty to overwrite the Pool
«— ._approveSharesToken fn .xx
/// This is normally used by Pool.constructor give max approval
~— to sharesToken, but Euler tokens require approval

50 /// of the main Euler contract —— not of the individual
«— sharesToken contracts. The required approval is given
«— above

/// in the constructor.

3.78 CVF-78
. Severity Minor - Status Info
+ Category Bad datatype - Source PoolEuler.sol

Recommendation The “1e18” value should be a named constant.
Client Comment No thank you.

Listing 78:

65 return IEToken(address (sharesToken)).convertBalanceToUnderlying
— (1e18);

46

69

71

90

92

113

121

ParaSpace-tv v
Review ABDK

3.79 CVF-79

. Severity Minor - Status Info

+ Category Suboptimal - Source PoolEuler.sol

Description The decimals adjustment is only done one way: the case when base token has
more than 18 decimals is not supported.

Recommendation Consider supporting this case or just don’t adjust decimals at all.
Client Comment Disagree, there are a number of major tokens with less than 18 decimals
(USDC, WBTC), while it is rare for a token to have more than 18 (YAM).

Listing 79:

/// The decimals of the shares amount returned is adjusted to
«— match the decimals of the baseToken

return (sharesToken .balanceOf (address(this)) / scaleFactor).
— ul04();

/]] @return shares The amount of shares that would be returned
«— from depositing (converted to base decimals).

shares = IEToken(address (sharesToken)).
~— convertUnderlyingToBalance(assets) / scaleFactor;

//] decimals via the overridden _getSharesBalance (). Therefore
«— this _unwrapPreview () expects to receive share

/// amounts which have already been converted to base decimals.
«— However, the eToken convertBalanceToUnderlying()

/// used in this fn requires share amounts in 18 decimals so we

«— scale the shareAmount back up to fp18 and pass

assets = |IEToken(address (sharesToken)).
~— convertBalanceToUnderlying(sharesinBaseDecimals x
— scaleFactor);

47

10

21

14

ParaSpace-tv <

Review ABDK
3.80 CVF-80

Severity Minor - Status Info

Category Procedural - Source lYVToken.sol

Description We didn’t review these files.
Client Comment OKk.

Listing 80:

import "@yield-protocol/utils—-v2/contracts/token /IERC20Metadata .
— sol™
import "@yield-protocol/utils—-v2/contracts/token /IERC20.sol";

3.81 CVF-81
Severity Minor - Status Info
Category Documentation - Source lYVToken.sol

Description The semantics of the returned values is unclear.

Recommendation Consider giving descriptive names to the returned values and/or adding
documentation comments.

Client Comment Acknowledged. We will discuss this internally and consider updating in the
future.

Listing 81:
function deposit(uint256 _amount, address _recipient) external

— returns (uint256);

function withdraw (uint256 _amount, address _recipient) external
«— returns (uint256);

3.82 CVF-82
Severity Minor - Status Info
Category Documentation - Source lYVToken.sol

Description The number format of the returned value is unclear.

Recommendation Consider documenting.

Client Comment Acknowledged. We will discuss this internally and consider updating in the
future.

Listing 82:

function pricePerShare() external view returns (uint256);

48

18

3

6

ParaSpace-tv <

Review ABDK
3.83 CVF-83

. Severity Minor - Status Info

+ Category Bad datatype - Source IYVToken.sol

Recommendation The returned type should be more specific.
Client Comment Acknowledged. We will discuss this internally and consider updating in the
future.

Listing 83:

function token () external view returns (address);

3.84 CVF-84
. Severity Minor - Status Info
. Category Procedural - Source |Pool.sol

Recommendation Should be “A0.8.0".
Listing 84:
pragma solidity >= 0.8.0;

3.85 CVF-85
. Severity Minor - Status Info
+ Category Procedural - Source |Pool.sol

Description We didn’t review these files.
Client Comment OKk.

Listing 85:

import "@yield-protocol/utils-v2/contracts/token /IERC20.sol";
import "@yield-protocol/utils-v2/contracts/token /IERC2612.sol";

import {IERC20Metadata} from "@yield-protocol/utils-v2/
— contracts /token/ERC20.sol";

11

28

30

32

36

41

ParaSpace-tv v
Review ABDK

3.86 CVF-86

. Severity Minor - Status Info

+ Category Bad naming - Source |Pool.sol

Description The semantics of the returned values is unclear.

Recommendation Consider giving them descriptive names and/or adding documentation
comments.

Client Comment Acknowledged. We will discuss this internally and consider updating in the
future.

Listing 86:

function burn(address baseTo, address fyTokenTo, uint256
«— minRatio, uint256 maxRatio) external returns (uint256,
«— uint256, uint256);

function burnForBase (address to, uint256 minRatio, uint256
«— maxRatio) external returns (uint256, uint256);

function buyBase (address to, uint128 baseOut, uintl28 max)
— external returns(uint128);

function buyBasePreview (uint128 baseOut) external view returns(
— uint128);

function buyFYToken(address to, uintl128 fyTokenOut, uintl28 max)
«— external returns(uintl128);:

function buyFYTokenPreview (uint128 fyTokenOut) external view

— returns(uint128);

function init(address to, address remainder , uint256 minRatio ,
— uint256 maxRatio) external returns (uint256, uint256,
— uint256);

function mint(address to, address remainder , uint256 minRatio ,
— uint256 maxRatio) external returns (uint256, uint256,
— uint256);

function mintWithBase (address to, address remainder , uint256
«— fyTokenToBuy, uint256 minRatio, uint256 maxRatio) external
«— returns (uint256, uint256 , uint256);

function sellBase(address to, uint128 min) external returns(
— uint128);

function sellBasePreview(uint128 baseln) external view returns(
— uint128);

function sellFYToken (address to, uint128 min) external returns(
— uint128);

function sellFYTokenPreview (uint128 fyTokenln) external view

— returns(uint128);

function ts(external view returns(intl28);

50

17

20

31
35
41

24

ParaSpace-tv v

Review ABDK
3.87 CVF-87

. Severity Minor - Status Info

+ Category Documentation - Source |Pool.sol

Description The number format of the returned values is unclear.
Recommendation Consider documenting.

Listing 87:

function currentCumulativeRatio() external view returns (uint256
— currentCumulativeRatio_ ,uint256 blockTimestampCurrent) ;
function cumulativeRatioLast() external view returns (uint256);

function gl ()externalview returns(int128);

function g2() external view returns(int128);

function getC() external view returns (int128);

function getCurrentSharePrice() external view returns (uint256);

function mu() external returns (int128):
function scaleFactor(external view returns(uint96);

function ts(external view returns(int128);

3.88 CVF-88
. Severity Minor - Status Fixed
+ Category Documentation - Source |Pool.sol

Description The number format of “glFee” is unclear.
Recommendation Consider documenting.
Client Comment It’s in the natspec: "This is a fp4 number where 10_000 is 1."

Listing 88:

function getCache () external view returns (uint104 baseCached,
«— uint104 fyTokenCached, uint32 blockTimestamplast, uintl16

«— glFee_);

40 function setFees(uint16 glFee_) external;

51

20
28

ParaSpace-tv <

Review ABDK
3.89 CVF-89

. Severity Minor - Status Info

+ Category Procedural - Source |IEToken.sol

Description We didn’t review these files.

Listing 89:
import "@yield-protocol/utils—-v2/contracts/token /IERC20Metadata .
— sol™
import "@yield-protocol/utils-v2/contracts/token /IERC20.sol";
3.90 CVF-90
+ Severity Minor - Status Info
. Category Unclear behavior - Source |[EToken.sol

Description The “subAccountld” argument is “uint’, but in the comments only values 0..255
are described. Does this mean that values above 255 are invalid?

Recommendation Consider clarifying.

Client Comment Acknowledged. We will discuss this internally and consider updating in the
future.

Listing 90:

/]| @param subAccountld 0 for primary, 1-255 for a sub—account.

/]| @param subAccountld 0 for primary, 1-255 for a sub—account

3.91 CVF-91
. Severity Minor - Status Info
+ Category Unclear behavior - Source |IEToken.sol

Recommendation This function should return the number of eTokens issued.
Client Comment Acknowledged. We will discuss this internally and consider updating in the
future.

Listing 91:

23 function deposit(uint subAccountld , uint amount) external;

23

25

ParaSpace-tv <

Review ABDK
3.92 CVF-92
+ Severity Major - Status Info
Category Unclear behavior - Source |IEToken.sol

Recommendation This function should accept an additional argument to specify the mini-
mum amount of eTokens to be issued.

Client Comment Out of scope.

Listing 92:

function deposit(uint subAccountld , uint amount) external;
3.93 CVF-93
. Severity Minor - Status Info
Category Bad datatype - Source |IEToken.sol

Recommendation The return type of this function could be more specific.
Client Comment Acknowledged. We will discuss this internally and consider updating in the
future.

Listing 93:

function underlyingAsset() external view returns (address);

3.94 CVF-94
. Severity Minor - Status Info
Category Unclear behavior - Source |IEToken.sol

Recommendation This function should return the number of eTokens burned.
Client Comment Acknowledged. We will discuss this internally and consider updating in the
future.

Listing 94:

30 function withdraw (uint subAccountld , uint amount) external;

30

6

ParaSpace-tv <

Review ABDK
3.95 CVF-95

+ Severity Major - Status Info

+ Category Flaw - Source |IEToken.sol

Recommendation This function should accept an additional argument to specify the maxi-
mum amount of eTokens to be burned.

Client Comment Out of scope.

Listing 95:

function withdraw (uint subAccountld , uint amount) external;

3.96 CVF-96
. Severity Minor - Status Info
+ Category Procedural - Source |[ERC4626.s0l

Description We didn’t review these files.
Client Comment OKk.

Listing 96:
import "@yield-protocol/utils-v2/contracts/token /IERC20Metadata .
— sol™
import "@yield-protocol/utils-v2/contracts/token /IERC20.sol";
3.97 CVF-97
. Severity Minor - Status Info
+ Category Bad naming - Source IERC4626.s0l

Description This interface doesn’t declare all the functions specified in ERC-4626.
Recommendation Consider renaming the interface to “IERC4626Like".all declaring all the
ERC-4626 functions. The interface also doesn’t declare ERC-4626 events. Consider declaring
them.

Client Comment No thank you.

Listing 97:
interface IERC4626 is IERC20, IERC20Metadata {

ParaSpace-tv <

Review ABDK
3.98 CVF-98

. Severity Minor - Status Info

+ Category Bad naming - Source IERC4626.s0l

Description The semantics of the returned values is unclear.

Recommendation Consider giving descriptive names to the returned values and/or adding
documentation comments.

Client Comment Acknowledged. We will discuss this internally and consider updating in the
future.

Listing 98:

function asset() external returns (IERC20);

function convertToAssets(uint256 shares) external view returns (
— uint256);

function convertToShares(uint256 assets) external view returns (
— uint256);

3.99 CVF-99
. Severity Minor - Status Info
+ Category Procedural - Source IERC20Like.sol

Description We didn’t review these files.

Client Comment Ok.

Listing 99:

import "@yield—protocol/utils-v2/contracts/token /IERC20Metadata .
— sol";

import "@yield-protocol/utils—-v2/contracts/token /IERC20.sol";

3.100 CVF-100

. Severity Minor - Status Info

+ Category Bad naming - Source IERC20Like.sol

Description This function is not a part of the ERC-20 standard.
Recommendation Consider renaming the interface to “IERC20Mintable” or something like
this.

Listing 100:

7 function mint(address receiver, uint256 shares) external;

ParaSpace-tv v
Review ABDK

3.101 CVF-101

. Severity Minor - Status Info
+ Category Bad naming - Source IERC20Like.sol
Description The argument name ‘shares” looks odd, as in ERC-20 asset units are usually

called “tokens”.
Recommendation Consider renaming the argument to “value” or “amount’”.

Listing 101:

7 function mint(address receiver, uint256 shares) external;

56

	1Document properties
	2Introduction
	2.1About ABDK
	2.2Disclaimer
	2.3Methodology

	3Detailed Results
	3.1CVF-1
	Client Comment Ok.
	Client Comment Ok.
	Client Comment Ok.
	Client Comment Ok.

